TED (21) 5022
(Revision-2021)

21	09230034	
41	UY ZJUUJ 4	

Reg.No	
Signature	

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/MANAGEMENT/ COMMERCIAL PRACTICE, NOVEMBER - 2025

REFRIGERATION AND AIR-CONDITIONING

[Maximum marks: 75] [Time: 3 Hours]

PART A

I. Answer all the following questions in one word or one sentence. Each question carries 1 mark

 $(9 \times 1 = 9 \text{ Marks})$

		Module outcome	Cognitive level
1	Define the COP of a refrigeration system.	M1.01	R
2	Name any refrigerant absorbent pair used in vapour absorption	M2.01	R
	systems.		
3	State the function of analyser in a practical vapour absorption	M2.01	R
	refrigeration system using ammonia refrigerant.		
4	List any two environmental impacts due to the wrong selection of	M2.04	R
	refrigerants.		
5	List any two examples of primary and secondary refrigerants.	M2.04	R
6	State the function of the refrigerant compressor.	M3.01	R
7	Define dew point temperature.	M4.01	R
8	Define humidity ratio.	M4.01	R
9	Sketch heating and humidification process on a typical simple	M4.01	R
	psychrometric chart.		

PART B

II. Answer any eight questions from the following. Each question carries 3 marks.

 $(8 \times 3 = 24 \text{ Marks})$

		Module	Cognitive
		outcome	level
1	Explain ice refrigeration.	M1.02	U
2	Draw the T-S diagram of a vapour compression refrigeration cycle	M2.01	R
	with subcooling and having saturated vapour at the end of		
	compression.		
3	List any three methods of improving COP of a simple saturation	M2.02	R
	cycle.		
4	List the desirable properties of an ideal refrigerant.	M2.04	R
5	List different compressors used in refrigeration systems.	M3.01	R
6	Explain bypass factor of a heating coil.	M4.01	U
7	List the factors affecting human comfort.	M4.03	R
8	Define effective temperature.	M4.03	R
9	Differentiate Unitary and Central air conditioning systems.	M4.04	U
10	Define sensible heat factor.	M4.06	R

PART C
Answer all questions. Each question carries seven marks

 $(6 \times 7 = 42 \text{ Marks})$

		Module outcome	Cognitive level
III.	Derive an expression for COP of Reversed Carnot cycle with	M1.02	U
	simple line diagram, p-v and T-s diagram.		
	OR		
IV.	A Carnot refrigeration cycle absorbs heat at -15 ^o C and rejects it at	M1.04	U
	35°C. The capacity of the system is 12 tonnes. Calculate the		
	COP of the cycle and heat rejected from the system per hour.		
V.	Explain the working of a simple vapour absorption system with	M2.01	U
	flow diagram.		
	OR		
VI.	List the advantages and disadvantages of Vapour compression	M2.03	U
	system over air refrigeration system.		
VII.	Explain the working of a roller and vane type refrigeration	M3.01	U
	compressor with a neat figure.		
	OR	3.50.04	
VIII.	Explain the working of an Automatic expansion valve with a neat	M3.04	U
13/	figure.	M2.06	TT
IX.	Explain Two stage cascade refrigeration system with schematic	M3.06	U
	diagram. OR		
X.	Explain the working of a domestic refrigerator with the help of	M3.05	U
Λ.	layout showing all major components.	W13.03	U
XI.	Atmospheric air with dry bulb temperature of 28°C and a wet	M4.02	A
711.	bulb temperature of 17°C is cooled to 15°C without changing its	1711.02	7.1
	moisture content. Determine the final relative humidity and final		
	wet bulb temperature.		
	OR		
XII.	Explain the summer air conditioning system with a sketch.	M4.05	U
XIII.	A small office hall of 25 persons capacity is provided with	M4.06	A
	summer air conditioning system with the following data:		
	Outside condition: 34 ^o C DBT and 28 ^o C WBT		
	Inside conditions: 24 ⁰ C DBT and 50%RH		
	Volume of air supplied: 0.4 m ³ /min/person		
	Sensible heat load in the room: 125600kJ/h		
	Latent heat load in room: 42000kJ/h		
	Find sensible heat factor of the plant.		
*****	OR	35405	
XIV.	List the various sources of heat gains in cooling load estimation.	M4.06	U
