TED (21)3	3043
(Revision	- 2021)

2110220226B

Reg.	No.	•••	••	••	 •	••	•	• •	 •	•	•	•	•	 	
Sign	atur	e.							 					••	

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE, NOVEMBER – 2025

ELECTRONIC CIRCUITS

[Maximum Marks: 75] [Time: 3 Hours]

PART-A

I. Answer 'all' the following questions in one word or one sentence. Each question carries 'one' mark.

 $(9 \times 1 = 9 \text{ Marks})$

		Module Outcome	Cogmuve level
1.	Define quiescent point.	M1.01	R
2.	What do you mean by amplification of a signal?	M1.02	R
3.	A tuned amplifier is used in application.	M2.01	R
4.	The Q point is fixed in theregion in a class A power amplifier.	M2.04	R
5.	Define feedback in amplifiers.	M3.01	R
6.	A crystal oscillator generates oscillations of constant frequency based on effect.	M3.04	R
7.	Name the oscillator circuit that can be used for audio frequency applications.	M3.05	R
8.	Define duty cycle.	M4.01	R
9.	Write the equation for η of an UJT.	M4.05	R

PART-B

II. Answer any 'eight' questions from the following. Each question carries 'three' marks.

(8 x 3 = 24 Marks)
Module Outcome Cognitive level

Define biasing in transistor and write the need for biasing. 1. M1.05R 2. A certain amplifier has voltage gain of 20 db. If the input signal M1.04Α voltage is IV, what is the output voltage? Draw the impedance curve of a parallel resonant circuit and give the M2.013. R equation for resonant frequency. Define cross over distortion. M2.044. R 5. Differentiate between tuned amplifier and a simple voltage amplifier. M2.04IJ What is the effect of negative feedback on gain in an amplifier? M3.01 IJ 6. 7. Draw the circuit diagram of a Colpitts oscillator. M3.04 R List the applications of a stable multivibrator. M4.02 R 8. 9. An astable multivibrator for 50% duty cycle is to be designed using M4.02 A timing components of C=100nF and R=33K. Find out its frequency of oscillation. Define LTP and UTP of a Schmitt trigger circuit. 10. M4.05R

 ${\bf PART-C}$ Answer 'all' questions from the following. Each question carries 'seven' marks.

(6 x 7 = 42 Marks)

		Module Outcome	Cognitive level
III.	Draw the circuit of a single stage CE amplifier. Draw its gain Vs	M1.02	U
	frequency characteristics and indicate the cut off frequency and band		
	width.		
	OR		
IV.	With the help of suitable circuit explain the effect of coupling	M1.05	U
	capacitors on the frequency response of RC coupled amplifier.		
V.	Draw the circuit of a single tuned amplifier and explain its frequency	M2.01	U
	response.		
	OR		
VI.	Explain the working of a single ended power amplifier with circuit	M2.03	R
	diagram.		
VII.	Distinguish between Class A, Class B, Class C operations of	M2.04	U
	amplifiers.		
	OR		
VIII.	Explain different negative feedback amplifier topologies with block	M3.01	R
	diagram.		
IX.	Design an RC phase shift oscillator for a frequency of 2Khz.	M3.02	A
	OR		
X.	Draw the circuit diagram and waveform of Wien bridge oscillator and	M3.04	R
	explain its working.		
XI.	Explain the working of a crystal oscillator with neat diagram. Also	M3.04	U
	mention its application.		
	OR		
XII.	With neat input and output waveforms explain the working of a	M4.01	R
	transistor as switch.		
XIII.	Draw the circuit diagram of an astable multivibrator with both	M4.01	U
	collector and base waveforms.		
	OR		
XIV.	Design a UJT relaxation oscillator for a frequency 1 K Hz.	M4.05	A
