TED (21)3	031
(Revision -	- 2021)

2110220129A

Reg.	No.	••	• •	•	••	•	•	••	•	•	•	•	• •	• •	 	• •	 	•
Signa	atur	e.															•	

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE, NOVEMBER – 2025

ANALOG AND DIGITAL CIRCUITS

[Maximum Marks: 75] [Time: 3 Hours]

PART-A

I. Answer 'all' the following questions in one word or one sentence. Each question carries 'one' mark.

(9 x 1 = 9 Marks)

Module Outcome Cognitive level

1	D.C 1 141		N/1 O1	
1.	Define class 'A' op	eration of a power amplifier.	M1.01	R
2.	State the importance	of coupling in amplifiers.	M1.01	R
3.	Match the following		M1.02	R
	(A) Amplifier	(a) No feedback		
	(B) Oscillator	(b) Positive feedback		
		(c) Negative feedback		
4.	Define slew rate of a	ın op-amp.	M2.01	R
5.	List any two charact	eristics of an ideal op amp.	M2.03	R
6.	Solve the given relat	ion to calculate X	M3.01	A
	$(45)_{10}$	$=(X)_2$		
7.	Write the full form of	of BCD.	M3.01	R
8.	Show the circuit syn	mbol of JK flip flop.	M4.02	R
9.	List any two types	of shift registers.	M4.03	R

PART-B

II. Answer any 'eight' questions from the following. Each question carries 'three' marks. $(8 \times 3 = 24 \text{ Marks})$

Module Outcome Cognitive level

Draw the circuit of a two stage RC coupled transistor amplifier and 1. M1.01R label all the components. State barkhausen's criteria for sustained oscillations. 2. M1.02R List any three comparisons between amplifiers and oscillators. M1.02 R 3. List the classification of oscillators based on the output waveforms. 4. M1.03 R Give examples for each type. Show the block diagram representation of an op-amp and label all M2.01R 5. the blocks. 6. State and explain demorgan's theorems and write its logical M3.03 IJ expression.

7.	Identify the two gates represented by 1 and 2 in the figure below.	M3.01	A
	Write the boolean expression for the output Y.		
	A		
	$\begin{bmatrix} \mathbf{R} & 1 \end{bmatrix}$		
	6-1		
		7.62.04	
8.	Choose universal gates from the given list and draw its representation	M3.01	R
	(a) AND (b) OR (c) NAND (d) NOR (e) XOR		
9.	Convert the hexadecimal number (E56D.78) ₁₆ into decimal numbers.	M3.01	A
10.	Draw the block schematic representation of 4 X 1 multiplexer.	M4.01	R

 $\label{eq:PART-C} \textbf{PART-C}$ Answer 'all' questions from the following. Each question carries 'seven' marks.

 $(6 \times 7 = 42 \text{ Marks})$

		Module Outcome	Cognitive level
III.	Draw a crystal oscillator circuit and label all parts.	M1.03	R
	OR		
IV.	Show the circuit arrangement of a bistable multivibrator.	M1.04	R
V.	Illustrate the working of zero crossing detector using op-amp.	M2.03	U
	OR		
VI.	Draw the circuit diagram of an integrator using op-amp and derive	M2.03	U
	an expression for output voltage.		
VII.	Outline the working of summing amplifier using op-amp.	M2.03	U
	OR		
VIII.	Explain the working of inverting amplifier using op-amp.	M2.03	U
IX.	Simplify the following boolean expression using K map.	M3.04	A
	$Y = \bar{A}BC + A\bar{B}C + A\bar{B}\bar{C} + ABC$		
	OR		
X.	Perform the given operation in binary number system using 2 's	M3.03	Α
	complement method		
	$(67)_{10}$ - $(34)_{10}$.		
XI.	Differentiate between D and T flip flops with their truth tables and	M4.03	U
	symbols.		
	OR		
XII.	With a neat circuit diagram, explain the working of ramp type ADC.	M4.03	U
XIII.	Explain the implementation of full adder using half adder.	M4.03	U
	OR		
XIV.	Illustrate the operation of a mod 6 asynchronous up counter using	M4.03	U
	JK flip flop with its circuit, timing diagram and truth table.		
