TED (21)-3134	
(Revision - 2021)	

2110220196

Reg.No	• • •					٠.		
Signature								

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/MANAGEMENT/ COMMERCIAL PRACTICE, NOVEMBER - 2025

DIGITAL COMPUTER FUNDAMENTALS

[Maximum marks: 75] [Time: 3 Hours]

PART A

I. Answer all the following questions in one word or one sentence. Each question carries 1 mark. (9 x 1 = 9 Marks)

		Module outcome	Cognitive level
1	Convert the octal 704 ₈ to binary.	M1.01	A
2	Find 2's complement of 1101.	M1.02	A
3	Expansion of ASCII is	M1.04	R
4	A three bit binary counter has number of states.	M4.04	R
5	Draw the truth table and logic symbol of two input NAND gate.	M2.03	U
6	Construct the K Map corresponds to two input AND gate.	M2.05	U
7	A multiplexer circuit with 2 ⁿ inputs havenumber of select lines	M2.04	U
	andnumber of output lines.		
8	Differentiate sequential logic and combinational logic circuits.	M3.01	U
9	What are the Asynchronous inputs of a flip flop?	M4.02	R

PART B II. Answer any eight questions from the following. Each question carries 3 marks.

 $(8 \times 3 = 24 \text{ Marks})$

		Module outcome	Cognitive level
1	Find the result of ABCD ₁₆ + 4321_{16} .	M1.01	A
2	How parity bit is used in error detection method?	M1.04	U
3	State Demorgans laws.	M2.01	R
4	Prove that $x(x+y) = x$.	M2.02	A
5	Design the function of two input AND gate using NAND gates.	M2.04	A
6	Draw the truth table and logic diagram of two input XOR gate.	M2.03	U
7	Explain the circuit of a Half adder with truth table.	M3.02	U
8	Draw the block diagram of 2 to 1 Multiplexer and write its truth	M3.04	U
	table.		
9	Compare Synchronous and Asynchronous counters.	M4.04	U
10	Construct SR latch using NAND gates.	M4.02	U

 $\begin{array}{c} \textbf{PART C} \\ \textbf{Answer all questions. Each question carries seven marks.} \end{array}$

 $(6 \times 7 = 42 \text{ Marks})$

			12 Marks)
		Module outcome	Cognitive level
III	Find the result of the following operations.	M1.01	A
	a) 375 ₈ to Decimal (2Marks)		
	b) ABCD ₁₆ to Binary and Octal (2 Marks)		
	c) 258 ₁₀ to Binary and Hexadecimal (3Marks)		
	OR		
IV	a) Explain ASCII codes and Grey codes. (4 Marks)	M1.04	U
	b) Add the decimal numbers 6 and 7 after converting it to BCD	M1.05	A
	format. (3 Marks)		
V	Implement the functions of Basic Gates using NOR gates. (7 Marks)	M2.04	A
	OR		
VI	Simplify the following function in SOP and POS using K map	M2.05	A
	$F(A,B,C,D) = \sum (0,1,2,5,8.9.10).$ (7 Marks)		
VII	Construct the truth table of full adder and implement its logic	M3.02	U
	circuit. (7Marks)		
	OR		
VIII	Construct a BCD adder circuit and describe its working. (7Marks)	M3.03	U
IX	Design a 4 bit parallel binary adder circuit and explain. (7Marks)	M3.04	U
	OR		
X	Draw the circuit of 2 to 4 decoder and explain. (7Marks)	M3.04	U
XI	Explain different types of Shift registers. (7Marks)	M4.03	U
	OR		
XII	Construct 3 bit ring counter and explain its working. (7Marks)	M4.04	A
XIII	Design a T flip flop using JK flip flop and explain its working.	M4.02	A
	(7Marks)		
	OR		
XIV	Design a 4 bit Asynchronous up counter and explain its working.	M4.03	A
	(7Marks)		
	I	I	
